

Journal of Nonlinear Analysis and Optimization

Vol. 12, No. 1, (2021),

ISSN : 1906-9685

http://doi.org/10.36893/JNAO.2021.V12I1.139-144

ERADICATING VULNERABILITIES IN WEB APPLICATION RECOGNITION AND

STATISTICAL ANALYSIS

1Mukkawar Sowmya, 2Srilakshmi Aluri, 3Muttavarapu Anusha, 4Kosuri Monika Naga

Santhoshini
1,2,3Assistant Professor, 4UG Student, 1,2,3,4Department of Computer Science and Engineering, Rishi

MS Institute of Engineering and Technlogy for Women, Kukatpally, Hyderabad.

ABSTRACT

Web application security is still a problem, despite the fact that there has been a lot of study on the

topic for more than 10 years. This problem is largely caused by vulnerable source code, which is

typically written in risky languages like PHP the origin code while static analysis techniques can assist

find vulnerabilities, they typically generate false positives and necessitate a lot of manual labor from

programmers to fix the code. We look into how to use a variety of approaches to identify source code

issues while producing fewer false positives. We combine data mining with taint analysis, which

locates potential vulnerabilities, to predict the possibility of false positives. This strategy combines two

seemingly incompatible strategies: the knowledge of vulnerabilities has been coded by humans (for

taint analysis), joined with the seemingly orthogonal approach of automatically obtaining that

knowledge (with machine learning, for data mining). Given this enhanced form of detection, we

propose doing automatic code correction by inserting fixes in the source code. Our approach was

implemented in the WAP tool, and an experimental evaluation was performed with a large set of PHP

applications. Our tool found 388 vulnerabilities in 1.4 million lines of code. Its accuracy and precision

were approximately 5% better than PhpMinerII's and 45% better than Pixy's.

Key words: CNN, RCNN, SSD, dataset, weapon detection.

INTRODUCTION

India's primary source of welfare comes from agriculture. Agriculture depends on rain to be successful.

It also improves the water resources. Farmers are able to better manage their crops as a consequence of

previous rainfall data, which boosts the nation's economy. Forecasting precipitation helps to prevent

floods, which safeguards people's lives and property. Experts in meteorology find it challenging to

predict rainfall due to changes in the timing and amount of precipitation. One of the most challenging

issues for academics from a variety of fields, including meteorological data mining, environmental

machine learning, functional hydrology, and numerical forecasting, is to construct a prediction model

for exact rainfall. How to deduce previous forecasts and use future predictions is a frequent query in

these challenges. A variety of sub-processes are typically composed of the substantial process in rainfall.

It is at times not promise to predict the precipitation correctly by on its global system. Climate forecasting

stands out for all countries around the globe in all the benefits and services provided by the

meteorological department. The job is very complicated because it needs specific numbers and all

signals are intimated without any assurance. Accurate precipitation forecasting has been an important

issue in hydrological science as early notice of stern weather can help avoid natural disaster injuries and

damage if prompt and accurate forecasts are made. The theory of the modular model and the integrati2on

http://doi.org/10.36893/JNAO.2021.V12I1.139-144

140 JNAO Vol. 12, No. 1, (2021)

http://doi.org/10.36893/JNAO.2021.V12I1.139-144

of different models has recently gained more interest in rainfall forecasting to address this challenge. A

huge range of rainfall prediction methodologies is available in India. In India, there are two primary

methods of forecasting rainfall. Regression, Artificial Neural Network (ANN), Decision Tree algorithm,

Fuzzy logic and team process of data handling are the majority frequently used computational methods

used for weather forecasting The basic goal is to follow information rules and relationships while gaining

intangible and potentially expensive knowledge. Artificial NN is a promising part of this wide field

Rainfall prediction remains a serious concern and has attracted the attention of governments, industries,

risk management entities, as well as the scientific community. Rainfall is a climatic factor that affects

many human activities like agricultural production, construction, power generation, forestry and

tourism, among others [1]. To this extent, rainfall prediction is essential since this variable is the one

with the highest correlation with adverse natural events such as landslides, flooding, mass movements

and avalanches. These incidents have affected society for years [2]. Therefore, having an appropriate

approach for rainfall prediction makes it possible to take preventive and mitigation measures for these

natural phenomena.

To solve this uncertainty, we used various machine learning techniques and models to make accurate

and timely predictions. These paper aims to provide end to end machine learning life cycle right from

Data preprocessing to implementing models to evaluating them. Data preprocessing steps include

imputing missing values, feature transformation, encoding categorical features, feature scaling and

feature selection. We implemented models such as Logistic Regression, Decision Tree, K Nearest

Neighbour, Rule-based and Ensembles. For evaluation purpose.

2. LITERATURE SURVEY

1) WASP: protecting web applications using positive tainting and syntax aware evaluation

AUTHORS: W. Halfond, A. Orso, and P. Manolios

Many software systems have evolved to include a Web-based component that makes them available to

the public via the Internet and can expose them to a variety of Web-based attacks. One of these attacks

is SQL injection, which can give attackers unrestricted access to the databases that underlie Web

applications and has become increasingly frequent and serious. This paper presents a new highly

automated approach for protecting Web applications against SQL injection that has both conceptual

and practical advantages over most existing techniques. From a conceptual standpoint, the approach is

based on the novel idea of positive tainting and on the concept of syntax-aware evaluation. From a

practical standpoint, our technique is precise and efficient, has minimal deployment requirements, and

incurs a negligible performance overhead in most cases. We have implemented our techniques in the

Web application SQL-injection preventer (WASP) tool, which we used to perform an empirical

evaluation on a wide range of Web applications that we subjected to a large and varied set of attacks

and legitimate accesses. WASP was able to stop all of the otherwise successful attacks and did not

generate any false positives.

2) Defending against injection attacks through context-sensitive string evaluation

AUTHORS: T. Pietraszek and C. V. Berghe Injection vulnerabilities pose a major threat to

application-level security. Some of the more common types are SQL injection, cross- site scripting and

shell injection vulnerabilities. Existing methods for defending against injection attacks, that is,

attacks exploiting these vulnerabilities, rely heavily on the application developers and are therefore

error- prone.

3) SigFree: A signature-free buffer overflow attack blocker

AUTHORS: X. Wang, C. Pan, P. Liu, and S. Zhu We propose SigFree, an online signature-free out-of-

the-box application-layer method for blocking code-injection buffer overflow attack messages targeting

at various Internet services such as Web service. Motivated by the observation that buffer overflow

attacks typically contain executables whereas legitimate client requests never contain executables in most

Internet services, SigFree blocks attacks by detecting the presence of code. Unlike the previous code

http://doi.org/10.36893/JNAO.2021.V12I1.132-131

141 JNAO Vol. 12, No. 1, (2021)

http://doi.org/10.36893/JNAO.2021.V12I1.139-144

detection algorithms, SigFree uses a new data-flow analysis technique called code abstraction that is

generic, fast, and hard for exploit code to evade.

4) Vulnerability removal with attack injection

AUTHORS: J. Antunes, N. F. Neves, M. Correia, P. Verissimo the increasing reliance put on networked

computer systems demands higher levels of dependability. This is even more relevant as new threats and

forms of attack are constantly being revealed, compromising the security of systems. This paper

addresses this problem by presenting an attack injection methodology for the automatic discovery of

vulnerabilities in software components. The proposed methodology, implemented in AJECT, follows

an approach similar to hackers and security analysts to discover vulnerabilities in network-connected

servers. AJECT uses a specification of the server's communication protocol and predefined test case

generation algorithms to automatically create a large number of attacks. Then, while it injects these

attacks through the network, it monitors the execution of the server in the target system and the responses

returned to the clients. The observation of an unexpected behavior suggests the presence of a

vulnerability that was triggered by some particular attack (or group of attacks). This attack can then be

used to reproduce the anomaly and to assist the removal of the error. To assess the usefulness of this

approach, several attack injection campaigns were performed with 16 publicly available POP and IMAP

servers. The results show that AJECT could effectively be used to locate vulnerabilities, even on well-

known servers tested throughout the years.

5) Fast black-box testing of system recovery code

AUTHORS: R. Banabic and G. Candea Fault injection---a key technique for testing the robustness of

software systems---ends up rarely being used in practice, because it is labor- intensive and one needs to

choose between performing random injections (which leads to poor coverage and low representativeness)

or systematic testing (which takes a long time to wade through large fault spaces). As a result, testers of

systems with high reliability requirements, such as MySQL, perform fault injection in an ad-hoc manner,

using explicitly- coded injection statements in the base source code and manual triggering of failures.

Existing System

There is a large corpus of related work, so we just summarize the main areas by discussing representative

papers, while leaving many others unreferenced to conserve space. Static analysis tools automate the

auditing of code, either source, binary, or intermediate. Taint analysis tools like CQUAL and Splint (both

for C code) use two qualifiers to annotate source code: the untainted qualifier indicates either that a

function or parameter returns trustworthy data (e.g., a sanitization function), or a parameter of a function

requires trustworthy data (e.g., mysql_query). The tainted qualifier means that a function or a parameter

returns non-trustworthy data (e.g., functions that read user input).

PROPOSED SYSTEM

This paper explores an approach for automatically protecting web applications while keeping the

programmer in the loop. The approach consists in analyzing the web application source code searching

for input validation vulnerabilities, and inserting fixes in the same code to correct these flaws. The

programmer is kept in the loop by being allowed to understand where the vulnerabilities were found, and

how they were corrected. This approach contributes directly to the security of web applications by

removing vulnerabilities, and indirectly by letting the programmers learn from their mistakes. This last

aspect is enabled by inserting fixes that follow common security coding practices, so programmers can

learn these practices by seeing the vulnerabilities, and how they were removed. We explore the use of

a novel combination of methods to detect this type of vulnerability: static analysis with data mining.

Static analysis is an effective mechanism to find vulnerabilities in source code, but tends to report many

false positives (non-vulnerabilities) due to its undesirability

MODULE DESCRIPTIONS

http://doi.org/10.36893/JNAO.2021.V12I1.132-131

142 JNAO Vol. 12, No. 1, (2021)

http://doi.org/10.36893/JNAO.2021.V12I1.139-144

Taint Analysis:

The taint analyzer is a static analysis tool that operates over an AST created by a lexer and a parser,

for PHP 5 in our case. In the beginning of the analysis, all symbols (variables, functions) are untainted

unless they are an entry point. The tree walkers build a tainted symbol table (TST) in which every cell

is a program statement from which we want to collect data. Each cell contains a subtree of the AST plus

some data. For instance, for statement $x = $b + $c; the TST cell contains the subtree of the AST that

represents the dependency of $x on

 $b and $c. For each symbol, several data items are stored, e.g., the symbol name, the line number of the

statement, and the taintedness.

Predicting False Positives

The static analysis problem is known to be related to Turing's halting problem, and therefore is

undividable for non- trivial languages. In practice, this difficulty is solved by making only a partial

analysis of some language constructs, leading static analysis tools to be unsound. In our approach, this

problem can appear, for example, with string manipulation operations. For instance, it is unclear what

to do to the state of a tainted string that is processed by operations that return a substring or concatenate

it with another string. Both operations can untaint the string, but we cannot decide with complete

certainty. We opted to let the string be tainted, which may lead to false positives but not false negatives.

Code Correction:

Our approach involves doing code correction automatically after the detection of the vulnerabilities is

performed by the taint analyzer and the data mining component. The taint analyzer returns data about

the vulnerability, including its class (e.g., SQLI), and the vulnerable slice of code. A fix is a call to a

function that sanitizes or validates the data that reaches the sensitive sink. Sanitization involves

modifying the data to neutralize dangerous Meta characters or metadata, if they are present. Validation

involves checking the data, and executing the sensitive sink or not depending on this verification.

Testing:

Our fixes were designed to avoid modifying the (correct) behavior of the applications. So far, we

witnessed no cases in which an application fixed by WAP started to function incorrectly, or that the

fixes themselves worked incorrectly. However, to increase the confidence in this observation, we

propose using software testing techniques to a program to determine for instance if the program in

general contains errors, or if modifications to the program introduced errors. This verification is done

by checking if these test cases produce incorrect or unexpected behavior or outputs. We use two

software testing techniques for doing these two verifications, respectively: 1) program mutation, and

2) Regression testing

http://doi.org/10.36893/JNAO.2021.V12I1.132-131

143 JNAO Vol. 12, No. 1, (2021)

http://doi.org/10.36893/JNAO.2021.V12I1.139-144

Fig.1. Login page

Fig.2. Home page

Fig.3. User page

http://doi.org/10.36893/JNAO.2021.V12I1.132-131

144 JNAO Vol. 12, No. 1, (2021)

http://doi.org/10.36893/JNAO.2021.V12I1.139-144

Fig.4. Login code page

CONCLUSION

In this work, a method for locating and repairing vulnerabilities in web applications is described, along

with a tool that uses the strategy to remedy input validation bugs and PHP programming issues. The

technique and the programmed both employ static source code analysis and data mining to search for

vulnerabilities. An induction rule classifier is used to establish the existence of false positives once the

top 3 machine learning classifiers have identified them. After carefully analyzing all of the available

possibilities, all classifiers were selected. It's important to keep in mind that this combination of

detecting techniques can't always yield reliable findings. The static analysis problem cannot be divided

and using data mining to solve it can only produce findings with a high degree of probability. The tool

corrects the code by inserting fixes, i.e., sanitization and validation functions. Testing is used to verify

if the fixes actually remove the vulnerabilities and do not compromise the (correct) behavior of the

applications. The tool was experimented with using synthetic code with vulnerabilities inserted on

purpose, and with a considerable number of open source PHP applications. It was also compared with

two source code analysis tools: Pixy, and PhpMinerII. This evaluation suggests that the tool can detect

and correct the vulnerabilities of the classes it is programmed to handle. It was able to find 388

vulnerabilities in 1.4 million lines of code. Its accuracy and precision were approximately 5% better

than PhpMinerII's, and 45% better than Pixy's.

REFERENCES

1. Symantec, Internet threat report. 2012 trends, vol. 18, Apr. 2013.

2. W. Halfond, A. Orso, and P. Manolios, “WASP: protecting web applications using positive

tainting and syntax aware evaluation,” IEEE Trans. Softw. Eng., vol. 34, no. 1, pp. 65– 81, 2008.

3. T. Pietraszek and C. V. Berghe, “Defending against injection attacks through context- sensitive

string evaluation,” in Proc. 8th Int. Conf. Recent Advances in Intrusion Detection, 2005, pp.

124–145.

4. X. Wang, C. Pan, P. Liu, and S. Zhu, “SigFree: A signature-free buffer overflow attack blocker,”

in Proc. 15th USENIX Security Symp., Aug. 2006, pp. 225–240.

5. J. Antunes, N. F. Neves, M. Correia, P. Verissimo, and R. Neves, “Vulnerability removal with

attack injection,” IEEE Trans. Softw. Eng., vol. 36, no. 3, pp. 357–370, 2010.

6. R. Banabic and G. Candea, “Fast black-box testing of system recovery code,” in Proc. 7th ACM

Eur. Conf. Computer Systems, 2012, pp. 281–294.

7. Y.-W. Huang et al., “Web application security assessment by fault injection and behavior

monitoring,” in Proc. 12th Int. Conf. World Wide Web, 2003, pp. 148–159.

8. Y.-W. Huang et al., “Securing web application code by static analysis and runtime protection,”

in Proc. 13th Int. Conf. World Wide Web, 2004, pp. 40–52.

9. N. Jovanovic, C. Kruegel, and E. Kirda, “Precise alias analysis for static detection of web

application vulnerabilities,” inProc. 2006Workshop Programming Languages and Analysis for

Security, Jun. 2006, pp. 27–36.

10. U. Shankar, K. Talwar, J. S. Foster, and D. Wagner, “Detecting format string vulnerabilities with

type qualifiers,” in Proc. 10th USENIX Security Symp., Aug. 2001, vol. 10, pp. 16–16.

http://doi.org/10.36893/JNAO.2021.V12I1.132-131

